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Crossover behavior in the event size distribution of the Olami-Feder-Christensen model
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~Received 21 November 2002; revised manuscript received 11 February 2003; published 21 April 2003!

The avalanche size distribution and supercritical toppling value distribution in the Olami-Feder-Christensen
model are examined, demonstrating that there exists a crossover valueaX'0.14 for the conservation parameter
in the model. We have further confirmed the location of this crossover by identifying upper and lower bounds
for aX . For levels of conservation belowaX the asymptotic behavior, in the limit of both infinite-system-size
and infinite-precision arithmetic, consists only of avalanches of size 1 with all sites toppling exactly at the
threshold value. For larger levels of conservation the probability of finding avalanches of size 2 or bigger
remains nonzero in the asymptotic limit.
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I. INTRODUCTION

In recent years self-organized criticality~SOC! @1,2# has
been introduced to provide an explanation for the ubiquit
presence of scale invariance in a range of naturally occur
systems. For example, in earthquakes and landslides the
distribution of events follows a power-law behavior over o
servable scales. In models where the dynamical variables
locally conserved there is analytic evidence of scale invar
behavior@3#, however, the situation is less clear in mode
with nonconservation. The most studied nonconserva
SOC model was introduced by Olami, Feder, and Ch
tensen~OFC! @4# and is motivated by the Burridge-Knopo
spring-block description of earthquake dynamics@5#.

In the OFC model@4#, each node (i , j ) on a squareL
3L lattice is associated with a continuous state variable
dimensionless energyui j . The system is slowly ‘‘driven’’ in
such a way that the energies at all the sites increase
formly until one of the sites reaches the threshold val
which can be chosen asuth51 without loss of generality.
When this happens an avalanche occurs on a time scale m
quicker than the driving speed. The supercritical site rela
according toui j →0 with its energy distributed to the fou
neighborsunn using the ruleunn→unn1aui j . The parameter
a determines the level of conservation in the toppling p
cess witha50.25 anda,0.25 corresponding to conserva
tive and dissipative systems, respectively. If any of
neighboring sites become supercritical~i.e., unn>1) as a re-
sult of this procedure they also topple according to the sa
rules. The ‘‘avalanche’’ continues until all node values a
below the threshold, at that stage the driving process p
ceeds until the next event is triggered.

Despite its apparent simplicity the OFC model display
range of complex behavior. For the case where perio
boundary conditions are applied to the lattice it has b
shown numerically that the system approaches a peri
state with all avalanches consisting of a single toppling
@6#, at least for sufficiently small values ofa @7#. This result
is associated with a synchronization of sites in the sys
during the organizational process. Middleton and Tang@8#
have given analytic support for this argument by examin
1063-651X/2003/67~4!/046114~6!/$20.00 67 0461
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systems containing only two sites. More recently, Drossel@9#
has provided evidence that in the limit of infinite-precisio
calculations the model with periodic boundary conditions
deed organizes to a periodic state with all avalanches b
of size 1. The failure to observe this in some previous sim
lations can be directly attributed to a small level of desy
chronization introduced by the use of limited precision ari
metic @9#. Thus, in the case of periodic boundary conditio
the system is not critical, i.e., it does not display a sca
invariant avalanche size distribution.

The behavior is more complicated when open bound
conditions are used, with many questions remaining un
solved. The interior of the system tends to synchronize
as described above, however, the inhomogeneity introdu
by the boundary sites~that have a different number of neigh
bors than the interior sites! prevents the creation of a com
pletely periodic state. The resulting ‘‘marginal synchroniz
tion’’ may allow a critical state to develop for large enoug
values ofa @2,7#. The model is critical in the conservativ
case, but is clearly not critical whena50 since all ava-
lanches are of size 1, thus there must exist a critical valueac
such that the model is only critical whena>ac . Early stud-
ies predictedac'0.05 @4#, while simulations of larger lat-
tices led Grassberger to the estimateac>0.18 @7#. More re-
cent studies focusing on properties of the avalan
branching rates predictac50.25 suggesting that the model
only critical in the conservative limit@10,11#, although these
findings remain controversial@12#. The prediction of Grass-
berger is based on the observations that fora,0.18 the ava-
lanche distributions change qualitatively, resulting in an e
cess of small avalanches and a loss of scale invarianc
similar conclusion is drawn analytically by Bottani and Del
motte @13# when some simplifying assumptions concerni
the avalanche dynamics and size distribution are employ
Furthermore, Drossel has conjectured that for smalla the
avalanche size distribution is again dominated by avalanc
of size 1@9#. In particular, in the asymptotic limit of both a
infinite-size system (L→`) and infinite precision, the distri-
bution of avalanches of size greater than 1 is predicted
converge to zero, with all sites toppling exactly at the thre
old valueuth51. Drossel concentrates on small values of t
©2003 The American Physical Society14-1
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conservation parametera<0.10 and associates the resu
with the strong level of synchronization in the systems s
died. This behavior cannot persist for all values ofa if the
model is critical in the conservative limit as assumed. Th
in this paper we aim to check the findings of Drossel a
identify thecrossover valueaX below which the event size
distributions are dominated by avalanches of size 1. Tha
aX is defined by demanding that the probability of finding
avalanche of size greater than 1 in the limit of both infini
system size and infinite precision is zero fora,aX and non-
zero fora>aX . The crossover value also provides, by de
nition, a strict lower bound forac .

In Sec. II, we examine energy distributions and avera
toppling values within an avalanche. We find clear eviden
for the existence of a crossover value at intermediate va
of the conservation parameter and predictaX'0.14. In Sec.
III, we introduce two methods for strictly bounding th
crossover value, which also allows us to test the effec
altering the floating-point precision used in the simulatio
Our main results and conclusions are summarized in Sec

II. DISTRIBUTION FUNCTIONS

We start our investigation by examining the probabil
distributionPd of energy differences between two neighbo
ing sites. This is motivated by observations that within
avalanche the energy values of neighboring sites are o
raised arbitrarily close to the threshold@9#. Thus, due to
rounding effects caused by finite floating-point precision
sequence of avalanches of size 1 are mistaken for a la
single avalanche. Under this scenario the energy differen
between nearest neighbors must typically be at multiples
a. This is plausible in the casea50.20, as shown in Fig. 1
~lower curve! where it is clear there are peaks at multiples
0.20 ~as previously noted by Grassberger@7#!. We further
observe that asL increases the peaks become more p
nounced, while the troughs reduce towards zero. Howe
moving towards the conservative regime we observe a
ferent behavior. In Fig. 1~upper curve!, we show the results
for a50.25 where it is apparent that although there are c
peaks they arenot at multiples ofa, but rather at multiples
of '0.31. This suggests that although the seed sites
topple with energy value 1, further toppling sites will typ
cally take supercritical values strictly greater than 1.

These results indicate that the crossover valueaX,0.25,
but the possibility remains thata50.25 is a special case wit
all nonconservative systems displaying similar behavior
a50.20. To check, we have investigated values ofa strictly
between 0.20 and 0.25, and find that although there are p
at the multiples ofa there are also peaks at secondary v
ues. Asa is increased these extra peaks are found to bec
increasingly important. For example, our results fora
50.24 are shown in Fig. 1~middle curve! where it is noted
that the local maximums are'0.28 apart, with the front of
these peaks being precisely at multiples ofa. In this case,
we believe that the broad humps seen are really two pe
with similar heights, sufficiently close to one another th
they are observed as just one. Fora,0.24 the individual
peaks are more easily distinguished.
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From the discussion above, we have shown that the
tributions of energy differences between neighboring sites
not consist of peaks only at multiples ofa, instead additional
peaks are also seen fora.0.20. This appears in conflic
with the concept of all sites toppling at the threshold value
the infinite-size limit. To further investigate, we analyze t
probability distribution of supercritical toppling energy va
ues usc directly. We find that for larger values ofa, the
majority of sites do not topple close to the thresholduth
51. In Fig. 2, we show the probability distributionsPsc of
supercritical energy values for several choices ofa.

Whena50.25 ~upper curve!, we observe a maximum a
usc'1.25. This maximum is consistent with our finding
above for the distribution of energy differences betwe
neighbors. Those distributions are ‘‘stationary,’’ i.e., o
finds the same distribution for a givena at any period during
the driving phase~in contrast the distribution of site energie
ui j is not generally stationary in the driving phase!. Thus, for
a50.25 sites must typically receive multiples of'0.31 in
order to retain the stationary distribution of peaks seen
Fig. 1. Therefore, a typical supercritical site will take a val
of usc'1.25'430.31 or some larger multiple. In fact, a
the system size is increased all peaks other than the on
1.25 are found to diminish and in the limitL→` the prob-
ability distribution is predicted to consist of ad function

FIG. 1. Probability distributionsPd of energy differences be
tween neighboring sites plotted on a logarithmic scale. From to
bottom the curves correspond toa50.25,0.24, and 0.20. Result
for systems of sizeL5700 ~solid! and L51000 ~dash dot! are
given, except for the casea50.25 for whichL5256 ~dotted! and
L5700 systems are shown. For clarity thea50.24 anda50.25
curves have been shifted upwards.
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CROSSOVER BEHAVIOR IN THE EVENT SIZE . . . PHYSICAL REVIEW E 67, 046114 ~2003!
centered atusc'1.25. The peak atusc51 seen in Fig. 2 for
finite-sized systems is related to the avalanche seed
which topple precisely at the threshold value by definition.
the L→` limit the average avalanche size is predicted
diverge since the system is assumed critical, and hence
proportion of seed sites tends to zero in this limit.

For the casea50.24 there are two peaks, atusc51 and
1.175, both of approximately the same height as shown
Fig. 2 ~middle curve!. As L→` the distribution in the range
1<usc&1.35 converges to a nonzero limit, with the dist
bution tending to zero for largerusc ~the convergence is
more convincingly seen when the distributions are plotted
a linear scale, we have used a logarithmic scale in Fig.
reveal the distribution structure at larger values ofusc which
is not visible on a linear scale!. As a is decreased the peak
1 becomes more prominent, as demonstrated by the caa
50.23 shown in Fig. 2~lower curve!. Once again there is a
finite region (1<usc&1.30) in which the distribution re-
mains nonzero in the limitL→`. We believe from this that
a crossover gradually occurs asa is decreased with the larg
est nonzero contribution of theL→` distribution tending
towards one, and the relative height of the peak at 1 incre
asa decreases. Even for the casea50.20 the distribution of
supercritical values extends over a finite nonzero range
L→`, indicating that a measurable proportion of supercr
cal sites do not topple at the threshold value in this lim
Thus, from our study of the distribution of supercritical to
pling energies, we predictaX,0.20. This was not apparen
from Fig. 1 where the peaks in the distribution of ener
differences between neighboring sites appeared to lie
proximately at multiples ofa50.20. We note that, while this
is a necessary condition, it is not sufficient to ensure all s
topple at the threshold in the infinite-size limit. This demo
strates that examination of the distribution of energy diff
ences alone is a poor technique for identifyingaX . Similarly,

FIG. 2. Probability distributionsPsc of supercritical toppling
energy plotted on a logarithmic scale. From top to bottom
curves correspond toa50.25,0.24, and 0.23. Results for system
of sizeL5500 ~solid! andL51000~dash dot! are given, except for
the casea50.25 for which the two largest systems simulated@L
5500 andL5700 ~dotted!# are shown. For clarity thea50.24 and
a50.25 curves have been shifted upwards.
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for decreasinga it is increasingly difficult to accurately de
duce theL→` distribution of supercritical toppling ener
gies, Psc , from finite-size simulation studies. Whena
50.18 there is clear evidence that the limiting distributi
remains nonzero over a finite range ofusc values, while for
a50.11 we only observe ad peak atusc51 in the L→`
limit. For intermediate values, we cannot make a conclus
identification of the limiting behavior from the finite-siz
system data available, and hence at this stage we ide
0.11,aX,0.18. In order to more accurately determine t
crossover value, we consider some alternative approa
below and in Sec. III.

Extrapolation to the infinite-size limit is more easi
achieved by focusing on the average toppling value, rat
than trying to extrapolate the entire supercritical distributi
discussed above. In particular, we calculate the average
pling energyūsc(a,L) for a range of conservation levelsa,
and system-sizesL. In Fig. 3, we plotūsc(a,L) against 1/L
and extrapolate to the infinite-size limit, for variousa. For
fixed a, as the system-size increasesūsc(a,L) decreases,
except in the conservative case. For the larger system-s
considered our data lie on approximately straight lines s
gesting extrapolation is a valid approach, and leading to
results shown in Fig. 4 forūsc(a,L→`). For a>0.16 the
limiting value of ūsc is strictly greater than 1, and fora
<0.12 the limiting value is identically 1 within the level o
precision of the simulations. Fora50.15 an extrapolated
value of ūsc(a,L→`)51 lies within our error bars, and s
larger systems would need to be simulated in order to p
tively determine ifaX,0.15. However, on the basis of thi
study we predictaX50.1460.02. We comment that the re
sults given in this section are identical when either doub
or quadruple-precision arithmetic is used for the simulatio
suggesting that these findings will not be affected by furt
increasing precision.

Finally, in this section, we note that there is a qualitati

e

FIG. 3. The average supercritical toppling energyūsc(a,L) for
various system sizes 128<L<1000, and a range of conservatio
levels. From top to bottom the cases shown area50.25, 0.24, 0.23,
0.22, 0.21, 0.20, 0.18, 0.15, and 0.13. Error bars lie within
symbols. The dot-dash lines denote the extrapolation to infin
system size.
4-3
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G. MILLER AND C. J. BOULTER PHYSICAL REVIEW E67, 046114 ~2003!
difference in the behavior ofūsc(a,L) between the conser
vative case a50.25 and dissipative choices wherea
,0.25. This is clearly observed in Fig. 3, where one fin
that the gradients of the lines in the two regimes have dif
ent signs. This indicates there may be some universal
tures of dissipative systems in the OFC model, an issue
discuss further in Sec. IV.

III. BOUNDS ON THE CROSSOVER VALUE

To check our results, we consider some methods
boundingaX , which also allow us to further test the effect
altering the floating-point precision used in the simulatio
First, we have looked at the percentage of avalanches w
are of size 1,N1(a,L) say, for a range ofa and L values,
and for different levels of precision. Since the rounding
rors associated with finite precision are predicted to lead
sequence of avalanches of size 1 being mistaken for a la
avalanche, the results forN1(a,L) found from simulations
are anticipated to consistently underestimate their infin
precision counterparts. Our results for simulations perform
using double-precision arithmetic are shown in Fig. 5. N
that the data typically lie on straight lines so extrapolation
the infinite-size limit is again reasonable. TheL→` results
are plotted in Fig. 6, and can be extrapolated to yield a lo
bound for the crossover value,aX

,'0.08, i.e., using double
precision arithmetic, we would anticipate that the probabi
of avalanches greater than 1 decays to zero fora,aX

, and
L→`. We have repeated this process using quadru
precision arithmetic in the simulations. The results
N1(a,L→`) are also shown in Fig. 6, leading to a larg
estimate for the lower bound as expected with increas
precision. In particular, we estimateaX

,'0.12 in the
quadruple-precision case, which is our best available e
mate for the lower bound.

Finally, we have looked to find a corresponding upp
boundaX

. for the crossover value. To do this, we have
corded the percentage of toppling sites,Nth(a,L), whose

FIG. 4. Infinite-system-size limit ofūsc plotted as a function of
a. The error bars, corresponding to the range of extrapolated va
consistent with the available finite-size system data, all lie wit
the symbols.
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toppling value lies in a range close to the threshold,usc

P@1,11D# say. If the probability of avalanches greater th
1 vanishes in the infinite-size and infinite-precision limit th
Nth will tend to 100%. In a finite-precision calculation som
sites may topple in larger avalanches due to rounding er
as discussed above. However, such sites will have topp
values close to 1 and so will be included inNth . In contrast
some sites may genuinely topple withuscP(1,11D# in the
infinite-precision, infinite-size limit and hence, we overes
mate the percentage of sites actually toppling at the thres
value, leading to an upper boundaX

. . We have examined the
results in both double and quadruple precision~with D
510212 and 10228, respectively!. The results are qualita

es FIG. 5. The percentage of avalanches of size 1,N1(a,L), plot-
ted as a function of 1/L. The data shown have been found fro
simulations using double-precision arithmetic. From top to bott
the cases shown area50.15, 0.16, . . . ,0.24, 0.25. The dot-dash
lines denote the extrapolation to infinite-system size.

FIG. 6. Extrapolated infinite-size limiting results forN1 plotted
as a function of 0.252a. Results using double-precision~up-
triangles! and quadruple-precision~down-triangles! arithmetic are
shown, and are indistinguishable for the casesa50.24 anda
50.25. The dotted and dashed lines are provided as a guide fo
eye, while error bars~giving the range of extrapolated values co
sistent with available finite-size system data! lie within the symbols.
4-4
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CROSSOVER BEHAVIOR IN THE EVENT SIZE . . . PHYSICAL REVIEW E 67, 046114 ~2003!
tively similar with the quadruple-precision values cons
tently lower than their double-precision counterparts
expected. In Fig. 7, we plotNth(a,L) for a range ofa andL
for the quadruple-precision case. For smalla, e.g., a
50.11, the data extrapolates to 100% in the infinite-s
limit, while for a>0.17 we find thatNth clearly does not
approach 100%. For 0.13,a,0.16 a linear extrapolation
over the larger system-sizes tends towards a limit be
100%, however, given the curvature of the lines one can
reliably extrapolate in this range. Using double-precis
arithmetic one finds the curvature is generally more p
nounced for largeL in comparison with Fig. 7. Furthermore
in double precision there is also curvature in thea50.17
data resulting in a larger prediction foraX

. than found from
quadruple-precision simulations. Hence, we anticipate th
we could further increase precision our estimate for
crossover upper bound would decrease. However, on the
sis of our available data our best estimate for the up
bound isaX

.'0.16. Thus, we have shown in this section th
on the basis of linear extrapolation the true value foraX lies
in the range 0.12<aX<0.16, fully consistent with the find
ings based on the average supercritical toppling value
scribed in Sec. II. Naturally, one must be wary of using e
trapolation methods to determineL→` behavior since it
may miss slow changes in slope, we consider alternative
terpretations of the data in Sec. IV.

IV. SUMMARY AND CONCLUSIONS

We have used a variety of methods to numerically inv
tigate the proposal that for the OFC model there exist
nonzero crossover valueaX below which the probability of
observing avalanches of size greater than 1 vanishes in
asymptotic limit of both infinite system-size and infinit
precision arithmetic. We have identified that such a crosso

FIG. 7. The percentage of avalanchesNth(a,L) with toppling
value uscP@1,1110228# plotted as a function of 1/L. Quadruple-
precision arithmetic simulations have been used, and error bar
within the symbols unless otherwise shown. From top to bott
the curves correspond toa50.11, 0.13, 0.15, 0.16, 0.17, 0.18
and 0.20.
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exists, and from a study of the average supercritical topp
energy predictaX'0.14. Further, we have determined upp
and lower bounds for the crossover value allowing us
explicitly analyze the effect of changing the level of floatin
point precision in our simulations. We find 0.12<aX

<0.16, consistent with the earlier analysis of Drossel wh
predicts 0.10&aX,0.25 @9#.

In the limit of an infinite-size system and infinite
precision arithmetic, the probability of an avalanche of s
greater than one is identically zero fora,aX . In this region,
a neighbor of the toppling site is frequently found to have
energy raised arbitrarily close to the threshold, and he
itself topples arbitrarily soon after the driving phase reco
mences. Thus, an analytic solution of the OFC model wo
find no event size distribution fora,aX . However, in an
experimental study~e.g., measuring earthquake or landsli
event size distrubutions! there will be an observation time
scale over which measurements are taken. A series of s
events which occur over a very short time period will
measured as simultaneous, thus the observation time s
may yield a similar mechanism to finite-precision arithme
in the simulations~i.e., allowing a sequence of single-siz
avalanches arbitrarily close to one another to be mistaken
one or more large avalanches!. Thus, we believe the presenc
of a nonzeroaX value in the OFC model should not b
viewed as a failing of the model in attempting to explain t
abundance of power-law distributions observed in nature

Finally, we note that many of our results show a quali
tively different behavior for the conservative regime com
pared to the dissipative cases. Most notably, theL→` lim-
iting values forN1(a,L) can all be fit, for a given choice o
precision, by a simple linear function with the exception
the conservative systema50.25 ~see Fig. 6!. Similarly the

slopes forūsc(L) ~Fig. 3! andN1(a,L) ~Fig. 5! take different
signs in the conservative and nonconservative cases, with
differences becoming more significant as the system sizeL is
increased. This may indicate thata50.25 separates two dis
tinct types of behavior in the OFC model. One possibility
that the critical valueac50.25, in which case these resul
would provide support for recent claims that criticality
special to the conservative limit, with all dissipative syste
sharing some universal, noncritical features@10,11#. An al-
ternate possibility is that the crossover valueaX50.25. This
is outside the range we have predicted on the basis of lin
extrapolation techniques, but as noted earlier when using
trapolation one can never be sure that simulations of
larger systems would not lead to different conclusio
Hence, one should not rule out the possibility that the qu
tative difference in conservative and dissipative behavio
an indicator ofaX50.25. Note that if this is the case on
would again predictac50.25 sinceac>aX .
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