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Crossover behavior in the event size distribution of the Olami-Feder-Christensen model

G. Miller and C. J. Boulter
School of Mathematical and Computer Sciences, Department of Mathematics, Scott Russell Building, Heriot-Watt University,
Edinburgh EH14 4AS, United Kingdom
(Received 21 November 2002; revised manuscript received 11 February 2003; published 21 April 2003

The avalanche size distribution and supercritical toppling value distribution in the Olami-Feder-Christensen
model are examined, demonstrating that there exists a crossoveraygh@ 14 for the conservation parameter
in the model. We have further confirmed the location of this crossover by identifying upper and lower bounds
for ay . For levels of conservation belowy the asymptotic behavior, in the limit of both infinite-system-size
and infinite-precision arithmetic, consists only of avalanches of size 1 with all sites toppling exactly at the
threshold value. For larger levels of conservation the probability of finding avalanches of size 2 or bigger
remains nonzero in the asymptotic limit.
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[. INTRODUCTION systems containing only two sites. More recently, DrogSEl
has provided evidence that in the limit of infinite-precision
In recent years self-organized criticalit@OQ [1,2] has calculations the model with periodic boundary conditions in-
been introduced to provide an explanation for the ubiquitousleed organizes to a periodic state with all avalanches being
presence of scale invariance in a range of naturally occurringf size 1. The failure to observe this in some previous simu-
systems. For example, in earthquakes and landslides the silaions can be directly attributed to a small level of desyn-
distribution of events follows a power-law behavior over ob-chronization introduced by the use of limited precision arith-
servable scales. In models where the dynamical variables areetic[9]. Thus, in the case of periodic boundary conditions
locally conserved there is analytic evidence of scale invarianthe system is not critical, i.e., it does not display a scale-
behavior[3], however, the situation is less clear in modelsinvariant avalanche size distribution.
with nonconservation. The most studied nonconservative The behavior is more complicated when open boundary
SOC model was introduced by Olami, Feder, and Chrisconditions are used, with many questions remaining unre-
tensen(OFQ) [4] and is motivated by the Burridge-Knopoff solved. The interior of the system tends to synchronize just
spring-block description of earthquake dynanii6s as described above, however, the inhomogeneity introduced
In the OFC model4], each nodei(j) on a square. by the boundary site@hat have a different number of neigh-
XL lattice is associated with a continuous state variable obors than the interior sit@prevents the creation of a com-
dimensionless energy; . The system is slowly “driven”in  pletely periodic state. The resulting “marginal synchroniza-
such a way that the energies at all the sites increase uniion” may allow a critical state to develop for large enough
formly until one of the sites reaches the threshold valueyalues ofa [2,7]. The model is critical in the conservative
which can be chosen ag,=1 without loss of generality. case, but is clearly not critical whea=0 since all ava-
When this happens an avalanche occurs on a time scale mutdnches are of size 1, thus there must exist a critical value
quicker than the driving speed. The supercritical site relaxesuch that the model is only critical wher= «. Early stud-
according tou;;— 0 with its energy distributed to the four ies predicteda.~0.05[4], while simulations of larger lat-
neighborsuy, using the ruleu,,— un,+ au;; . The parameter tices led Grassberger to the estimate=0.18[7]. More re-
a determines the level of conservation in the toppling pro-cent studies focusing on properties of the avalanche
cess witha=0.25 ande<0.25 corresponding to conserva- branching rates prediet,=0.25 suggesting that the model is
tive and dissipative systems, respectively. If any of theonly critical in the conservative limit10,11], although these
neighboring sites become supercriti¢a¢., u,=1) as are- findings remain controversigl2]. The prediction of Grass-
sult of this procedure they also topple according to the samberger is based on the observations thatofer0.18 the ava-
rules. The “avalanche” continues until all node values arelanche distributions change qualitatively, resulting in an ex-
below the threshold, at that stage the driving process process of small avalanches and a loss of scale invariance. A
ceeds until the next event is triggered. similar conclusion is drawn analytically by Bottani and Dela-
Despite its apparent simplicity the OFC model displays amotte [13] when some simplifying assumptions concerning
range of complex behavior. For the case where periodithe avalanche dynamics and size distribution are employed.
boundary conditions are applied to the lattice it has beemrurthermore, Drossel has conjectured that for smathe
shown numerically that the system approaches a periodiavalanche size distribution is again dominated by avalanches
state with all avalanches consisting of a single toppling siteof size 1[9]. In particular, in the asymptotic limit of both an
[6], at least for sufficiently small values af [7]. This result infinite-size systeml(— ) and infinite precision, the distri-
is associated with a synchronization of sites in the systenbution of avalanches of size greater than 1 is predicted to
during the organizational process. Middleton and T@8Q converge to zero, with all sites toppling exactly at the thresh-
have given analytic support for this argument by examiningold valueuy,= 1. Drossel concentrates on small values of the
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conservation parameter<0.10 and associates the results
with the strong level of synchronization in the systems stu-
died. This behavior cannot persist for all valuesaoff the
model is critical in the conservative limit as assumed. Thus,
in this paper we aim to check the findings of Drossel and
identify the crossover valuary below which the event size
distributions are dominated by avalanches of size 1. That is,
ay is defined by demanding that the probability of finding an
avalanche of size greater than 1 in the limit of both infinite-
system size and infinite precision is zero o ayx and non-
zero fora=ay . The crossover value also provides, by defi-
nition, a strict lower bound foe.

In Sec. Il, we examine energy distributions and average
toppling values within an avalanche. We find clear evidence
for the existence of a crossover value at intermediate values
of the conservation parameter and predigt=0.14. In Sec.

[ll, we introduce two methods for strictly bounding the

crossover value, which also allows us to test the effect of
altering the floating-point precision used in the simulations.
Our main results and conclusions are summarized in Sec. IV.

II. DISTRIBUTION FUNCTIONS

We start our investigation by examining the probability

~
!

distribution P4 of energy differences between two neighbor- 0 0.2 0.4 0.6 0.8 1

ing sites. This is motivated by observations that within an Energy differences

avalanche the energy values of neighboring sites are often o _

raised arbitrarily close to the threshol8]. Thus, due to FIG. 1. Probability distribution®®y of energy differences be-

rounding effects caused by finite floating-point precision tween neighboring sites plotted on a logarithmic scale. From top to
sequence of avalanches of size 1 are mistaken for a larg pttom the curves co_rrespond o= 0'25'0_'24' and 0.20. Results
single avalanche. Under this scenario the energy differencad Systems 0: S'Zhd‘fmo_(gozlg)f and#;iofgs(gajh dot arg
between nearest neighbors must typically be at multiples o?'xen’ except for the case=0.25 for whichl = ( Otte? an

. . . - L=700 systems are shown. For clarity the=0.24 anda=0.25
a. This is plausible in the case=0.20, as shown in Flg. 1 urves have been shifted upwards.
(lower curve where it is clear there are peaks at multiples of
0.20 (as previously noted by Grassberd&i). We further From the discussion above, we have shown that the dis-
observe that ad increases the peaks become more pro+ributions of energy differences between neighboring sites do
nounced, while the troughs reduce towards zero. Howevenot consist of peaks only at multiples of instead additional
moving towards the conservative regime we observe a difpeaks are also seen far>0.20. This appears in conflict
ferent behavior. In Fig. Tupper curvg we show the results with the concept of all sites toppling at the threshold value in
for «=0.25 where it is apparent that although there are cleathe infinite-size limit. To further investigate, we analyze the
peaks they ar@ot at multiples ofa, but rather at multiples probability distribution of supercritical toppling energy val-
of ~0.31. This suggests that although the seed sites alles ug. directly. We find that for larger values of, the
topple with energy value 1, further toppling sites will typi- majority of sites do not topple close to the thresholg
cally take supercritical values strictly greater than 1. =1. In Fig. 2, we show the probability distributio;. of

These results indicate that the crossover valye<0.25,  supercritical energy values for several choicesvof

but the possibility remains that=0.25 is a special case with When a=0.25 (upper curvg we observe a maximum at
all nonconservative systems displaying similar behavior tay,,~1.25. This maximum is consistent with our findings
a=0.20. To check, we have investigated valueseaitrictly  above for the distribution of energy differences between
between 0.20 and 0.25, and find that although there are peakgighbors. Those distributions are “stationary,” i.e., one
at the multiples ofe there are also peaks at secondary val-finds the same distribution for a givenat any period during
ues. Asw is increased these extra peaks are found to become driving phaséin contrast the distribution of site energies
increasingly important. For example, our results fer  uj; is not generally stationary in the driving phasehus, for
=0.24 are shown in Fig. {middle curve where it is noted «=0.25 sites must typically receive multiples sf0.31 in
that the local maximums are 0.28 apart, with the front of order to retain the stationary distribution of peaks seen in
these peaks being precisely at multiplesaofin this case, Fig. 1. Therefore, a typical supercritical site will take a value
we believe that the broad humps seen are really two peaksf ug~1.25~4x0.31 or some larger multiple. In fact, as
with similar heights, sufficiently close to one another thatthe system size is increased all peaks other than the one at
they are observed as just one. ReK0.24 the individual 1.25 are found to diminish and in the limit—oc the prob-
peaks are more easily distinguished. ability distribution is predicted to consist of & function
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e . . FIG. 3. The average supercritical toppling enetgy(a,L) for
FIG. 2. Probability distributionss. of supercritical toppling | 4rious system sizes 128 <1000, and a range of conservation

energy plotted on a logarithmic scale. From top to bottom thejgye|s From top to bottom the cases shownare0.25, 0.24, 0.23,
curves correspond ta=0.25,0.24, and 0.23. Results for systems 0.22 0.21. 0.20. 0.18. 0.15. and 0.13. Error bars lie within the

of sizeL =500 (solid) andL = 1000(dash dotare given, except for - gy minois The dot-dash lines denote the extrapolation to infinite-
the casea=0.25 for which the two largest systems simulaféd system size.

=500 andL =700 (dotted] are shown. For clarity the=0.24 and
a=0.25 curves have been shifted upwards.

for decreasingy it is increasingly difficult to accurately de-
centered ati,~1.25. The peak ai,.=1 seen in Fig. 2 for duce theL—o distribution of supercritical toppling ener-
SC . . SC . H

finite-sized systems is related to the avalanche seed sit@des, Psc, from finite-size simulation studies. Whea

which topple precisely at the threshold value by definition. in=0.18 there is clear evidence that the limiting distribution

the L— limit the average avalanche size is predicted to"€MaiNs nonzero over a finite rangewf; values, while for

diverge since the system is assumed critical, and hence tHg=0-11 we only observe @ peak atusc=1 in theL—c
proportion of seed sites tends to zero in this limit. limit. For intermediate values, we cannot make a conclusive

For the caser=0.24 there are two peaks, af.=1 and identification of the limiting behavior from the finite-size
1.175, both of approximately the same height as shown iiSystem data available, and hence at this stage we identify

Fig. 2 (middle curve. As L—« the distribution in the range 0.11<ax<0.18. In order tq more accurately Qetermine the
1=u,.<1.35 converges to a nonzero limit, with the distri- crossover value, we consider some alternative approaches

bution tending to zero for largen., (the convergence is P€loW and in Sec. lll.

more convincingly seen when the distributions are plotted on Extrapolatlon to the infinite-size limit IS more easily
a linear scale, we have used a logarithmic scale in Fig. 2 tg¢hieved by focusing on the average toppling value, rather

reveal the distribution structure at larger valuesigf which 'éhan tryin dg tg extrallpolati:. thle entire Slljpelr(;”t'tﬁal dlstrlbutl?n
is not visible on a linear scaleAs « is decreased the peak at ISCUSSed above. In particuiar, we caicuiate the average top-

1 becomes more prominent, as demonstrated by theczasepIing energyus(a,L) for a range of conservation leveis

=0.23 shown in Fig. Zlower curve. Once again there is a and system-sizes. In Fig. .3’. We_p|0t!JS?(a,L) ag_ainst w
finite region (1=<u..<1.30) in which the distribution re- and extrapolate to the infinite-size limit, for various For

mains nonzero in the limit — . We believe from this that fixed LtY" ati the systerr}[_-sme mcrelzzase%(al,L) decre?ses,_
a crossover gradually occurs ass decreased with the larg- except In the conservative case. For e farger System-sizes

est nonzero contribution of the—c distribution tending consldered our d?ta I!e on approxmately straight I!nes Sug-
&estmg extrapolation is a valid approach, and leading to the

asa decreases. Even for the case0.20 the distribution of 'esults shown in Fig. 4 fots(e,L—). For «=0.16 the
supercritical values extends over a finite nonzero range d§niting value of us. is strictly greater than 1, and fox
L—c0, indicating that a measurable proportion of Supercriti_so.;z_ the limiting value is identically 1 within the level of
cal sites do not topple at the threshold value in this limit.Precision of the simulations. Fax=0.15 an extrapolated
Thus, from our study of the distribution of supercritical top- value ofug(a,L—)=1 lies within our error bars, and so
pling energies, we prediaty<0.20. This was not apparent larger systems would need to be simulated in order to posi-
from Fig. 1 where the peaks in the distribution of energytively determine ifax<<0.15. However, on the basis of this
differences between neighboring sites appeared to lie atudy we predictey=0.14+0.02. We comment that the re-
proximately at multiples ofv=0.20. We note that, while this sults given in this section are identical when either double-
is a necessary condition, it is not sufficient to ensure all sitesr quadruple-precision arithmetic is used for the simulations,
topple at the threshold in the infinite-size limit. This demon-suggesting that these findings will not be affected by further
strates that examination of the distribution of energy differ-increasing precision.

ences alone is a poor technique for identifymag. Similarly, Finally, in this section, we note that there is a qualitative
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FIG. 4. Infinite-system-size limit ofis. plotted as a function of .
a. The error bars, corresponding to the range of extrapolated valuetdeIG' 5'f Thf. percferll-t/ag_]r?] ofda\{[ala%ches Ef Slzubﬂ(’a’l;)’ p(ljotf—
consistent with the available finite-size system data, all lie within co @s @ function-of . Ihe daa snown have been found from
the symbols. simulations using double-precision arithmetic. From top to bottom
the cases shown are=0.15, 0.16...,0.24, 0.25. The dot-dash

lines denote the extrapolation to infinite-system size.

difference in the behavior afi;(«,L) between the conser-
vative case «=0.25 and dissipative choices where
<0.25. This is clearly observed in Fig. 3, where one findsfoppling value lies in a range close to the threshalg,
that the gradients of the lines in the two regimes have differ<[1,1+A] say. If the probability of avalanches greater than
ent signs. This indicates there may be some universal fedl vanishes in the infinite-size and infinite-precision limit then
tures of dissipative systems in the OFC model, an issue whly, will tend to 100%. In a finite-precision calculation some
discuss further in Sec. IV. sites may topple in larger avalanches due to rounding errors
as discussed above. However, such sites will have toppling
values close to 1 and so will be includedNg,. In contrast
some sites may genuinely topple witly.e (1,1+A] in the

To check our results, we consider some methods oinfinite-precision, infinite-size limit and hence, we overesti-
boundingay , which also allow us to further test the effect of mate the percentage of sites actually toppling at the threshold
a[tering the ﬂoating-point precision used in the SimU|ati0n-S.Va|ue' |eading to an upper boun@ . We have examined the
First, we have looked at the percentage of avalanches whiglsyits in both double and quadruple precisiguith A

are of size 1N;(«,L) say, for a range ok andL values, _ 1012 gng 1028 respectively. The results are qualita-
and for different levels of precision. Since the rounding er-

rors associated with finite precision are predicted to lead to a
sequence of avalanches of size 1 being mistaken for a larger
avalanche, the results fod;(«,L) found from simulations .-
are anticipated to consistently underestimate their infinite- 80
precision counterparts. Our results for simulations performed N\\:x‘,m"‘
using double-precision arithmetic are shown in Fig. 5. Note ‘
that the data typically lie on straight lines so extrapolation to
the infinite-size limit is again reasonable. The->~ results

Ill. BOUNDS ON THE CROSSOVER VALUE

100

are plotted in Fig. 6, and can be extrapolated to yield a lower
bound for the crossover value, ~0.08, i.e., using double-
precision arithmetic, we would anticipate that the probability
of avalanches greater than 1 decays to zeroofaray and
L—w. We have repeated this process using quadruple-
precision arithmetic in the simulations. The results for
Ni(a,L—) are also shown in Fig. 6, leading to a larger
estimate for the lower bound as expected with increasing
precision. In particular, we estimater;~0.12 in the

N1(a,L—>oo)

40

20

0 0.05

0.1
0.25-a

0.15

0.2

FIG. 6. Extrapolated infinite-size limiting results fbiy, plotted
as a function of 0.25«. Results using double-precisiofup-

quadruple-precision case, which is our best available estiangies and quadruple-precisiotdown-triangles arithmetic are

mate for the lower bound.

shown, and are indistinguishable for the cages0.24 and«

Finall)>/, we have looked to find a corresponding UPPEr=0.25. The dotted and dashed lines are provided as a guide for the
bound ay for the crossover value. To do this, we have re-eye, while error barggiving the range of extrapolated values con-

corded the percentage of toppling sité,(«,L), whose
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100 T y y exists, and from a study of the average supercritical toppling
energy predictvx~0.14. Further, we have determined upper

ol and lower bounds for the crossover value allowing us to
\ explicitly analyze the effect of changing the level of floating-

point precision in our simulations. We find O&2y
=<0.16, consistent with the earlier analysis of Drossel which

predicts 0.16 ax<0.25[9].
In the limit of an infinite-size system and infinite-
precision arithmetic, the probability of an avalanche of size

— e
e

20l - :F_ ; greater than one is identically zero fer ay . In this region,
-o—o—— 00— e
8

a neighbor of the toppling site is frequently found to have its
energy raised arbitrarily close to the threshold, and hence
itself topples arbitrarily soon after the driving phase recom-
x10° mences. Thus, an analytic solution of the OFC model would
find no event size distribution for<ay. However, in an
FIG. 7. The percentage of avalanctég(a,L) with toppling  experimental studye.g., measuring earthquake or landslide
value usce[1,1+10 ?°] plotted as a function of L. Quadruple-  eyent size distrubutiopsthere will be an observation time

precision arithmetic simulations have been used, and error bars lig.516 oyer which measurements are taken. A series of small
within the symbols unless otherwise shown. From top to bottom

the curves correspond ta=0.11, 0.13, 0.15, 0.16, 0.17, 0.18, events which o_ccur over a very short time pgnod_wﬂl be
and 0.20. measured as simultaneous, thus the observation time scale

may Yield a similar mechanism to finite-precision arithmetic
in the simulations(i.e., allowing a sequence of single-size
tively similar with the quadruple-precision values Consis_avalanches arbitrarily close to one another to be mistaken for

tently lower than their double-precision counterparts a°n€ or more large avalancheshus, we believe the presence
expected. In Fig. 7, we pldt,(e,L) for a range ofx andL o_f a nonzeroay value in the OFC mode! should not be
for the quadruple-precision case. For smal] e.g., « Viewed as a failing of the model in attempting to explain the
=0.11, the data extrapolates to 100% in the infinite-sizeabundance of power-law distributions observed in nature.
limit, while for «=0.17 we find thatNy, clearly does not Finally, we note that many of our results show a qualita-
approach 100%. For 0.¥3¢<0.16 a linear extrapolation tively different behavior for the conservative regime com-
over the larger system-sizes tends towards a limit belowpared to the dissipative cases. Most notably, lthe lim-
100%, however, given the curvature of the lines one cannating values forN,(«,L) can all be fit, for a given choice of
reliably extrapolate in this range. Using double-precisionprecision, by a simple linear function with the exception of
arithmetic one finds the curvature is generally more prothe conservative system=0.25 (see Fig. 6. Similarly the

pounced for Iarggk in comparison with Fig. 7. .Furthermore, slopes foug (L) (Fig. 3) andN;(a,L) (Fig. 5) take different
in double precision there is also curvature in #e0.17  gjgng in the conservative and nonconservative cases, with the
data resulting in a larger prediction fas than found from  giferences becoming more significant as the systemlsise
quadruple-precision simulations. Hence, we anticipate that if,creased. This may indicate that=0.25 separates two dis-

we could further increase precision our estimate for the[inct types of behavior in the OFC model. One possibility is
crossover upper bound would decrease. However, on the bgsas yhe critical valuar,=0.25, in which case these results

sis of our available data our best estimate for the uppey,

i >~ i I i . . . . . . . .
bound isay ~0.16. Thus, we have shown in this section thatgpecig) to the conservative limit, with all dissipative systems
on the basis of linear extrapolation the true valuedgrlies sharing some universal, noncritical featufd®,11. An al-
in the range 0.12 ax=0.16, fully consistent with the find- (ermate possibility is that the crossover valug=0.25. This
ings based on the average supercritical toppling value dgg gytside the range we have predicted on the basis of linear

scribed in Sec. II. Naturally, one must be wary of using ex-extrapolation techniques, but as noted earlier when using ex-
trapolation methods to determirie—c behavior since it trapolation one can never be sure that simulations of still

may miss slow changes in slope, we consider altemnative inyrger systems would not lead to different conclusions.
terpretations of the data in Sec. IV. Hence, one should not rule out the possibility that the quali-
tative difference in conservative and dissipative behavior is
an indicator ofay=0.25. Note that if this is the case one
would again predicty,=0.25 sincea.= ay.

We have used a variety of methods to numerically inves-
tigate the proposal that for the OFC model there exists a
nonzero crossover valuey below which the probability of
observing avalanches of size greater than 1 vanishes in the
asymptotic limit of both infinite system-size and infinite-  This research was supported in part by The Royal Society,
precision arithmetic. We have identified that such a crossoved.K.

IV. SUMMARY AND CONCLUSIONS
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